Published Online:https://doi.org/10.5465/annals.2017.0099

Increasingly, management researchers are using topic modeling, a new method borrowed from computer science, to reveal phenomenon-based constructs and grounded conceptual relationships in textual data. By conceptualizing topic modeling as the process of rendering constructs and conceptual relationships from textual data, we demonstrate how this new method can advance management scholarship without turning topic modeling into a black box of complex computer-driven algorithms. We begin by comparing features of topic modeling to related techniques (content analysis, grounded theorizing, and natural language processing). We then walk through the steps of rendering with topic modeling and apply rendering to management articles that draw on topic modeling. Doing so enables us to identify and discuss how topic modeling has advanced management theory in five areas: detecting novelty and emergence, developing inductive classification systems, understanding online audiences and products, analyzing frames and social movements, and understanding cultural dynamics. We conclude with a review of new topic modeling trends and revisit the role of researcher interpretation in a world of computer-driven textual analysis.

REFERENCES

  • Abbott, A. 1988. The system of professions: An essay on the division of expert labor (1st ed.). Chicago: University of Chicago Press. Google Scholar
  • Abrahamson, E., & Fairchild, G. 1999. Management fashion: Lifecycles, triggers, and collective learning processes. Administrative Science Quarterly, 44(4): 708–740. Google Scholar
  • Aggarwal, V., Lee, M. K., & Hwang, E. 2017. Status gains and subsequent effects on evaluations. Academy of Management Proceedings, 2017(1): 16355.LinkGoogle Scholar
  • Ahonen, P. 2015. Institutionalizing big data methods in social and political research. Big Data & Society, 2(2): 1–12. Google Scholar
  • Al Sumait, L., Barbará, D., Gentle, J., & Domeniconi, C. 2009. Topic significance ranking of LDA generative models. In En W. BuntineM. GrobelnikD. Mladenić, &J. Shawe-Taylor (Eds.)Machine learning and knowledge discovery in databases, vol. 5781: 67–82. Berlin: Springer. Google Scholar
  • Allen, C., Luo, H., Murdock, J., Pu, J., Wang, X., Zhai, Y., & Zhao, K. 2017. Topic modeling the Han dian ancient classics. ArXiv preprint arXiv:1702.00860. Retrieved from https://arxiv.org/abs/1702.00860. Accessed on October 1, 2018. Google Scholar
  • Almquist, Z. W., & Bagozzi, B. E. 2017. Using radical environmentalist texts to uncover network structure and network features. Sociological Methods & Research: 1–56, https://doi.org/10.1177/0049124117729696. Google Scholar
  • Alvesson, M., & Kärreman, D. 2000a. Taking the linguistic turn in organizational research: Challenges, responses, consequences. Journal of Applied Behavioral Science, 36(2): 136–158. Google Scholar
  • Alvesson, M., & Kärreman, D. 2000b. Varieties of discourse: On the study of organizations through discourse analysis. Human Relations, 53(9): 1125–1149. Google Scholar
  • Antons, D., Joshi, A. M., & Salge, T. O. 2018. Content, contribution, and knowledge consumption: Uncovering hidden topic structure and rhetorical signals in scientific texts. Journal of Management, https://doi.org/10.1177/0149206318774619. Google Scholar
  • Antons, D., Kleer, R., & Salge, T. O. 2016. Mapping the topic landscape of JPIM, 1984–2013: In search of hidden structures and development trajectories. Journal of Product Innovation Management, 33(6): 726–749. Google Scholar
  • Argote, L., & Greve, H. R. 2007. “A behavioral theory of the firm”: 40 years and counting: Introduction and impact. Organization Science, 18(3): 337–349. Google Scholar
  • Arora, A. 1995. Licensing tacit knowledge: Intellectual property rights and the market for know-how. Economics of Innovation and New Technology, 4(1): 41–60. Google Scholar
  • Arora, A., Gittelman, M., Kaplan, S., Lynch, J., Mitchell, W., & Siggelkow, N. 2016. Question-based innovations in strategy research methods. Strategic Management Journal, 37(1): 3–9. Google Scholar
  • Augustine, G., & King, B. G. 2017. Behind the scenes: A backstage look at field formation within sustainability in higher education. Academy of Management Proceedings, 2017(1): 15788.LinkGoogle Scholar
  • Azzopardi, L., Girolami, M., & van Risjbergen, K. 2003. Investigating the relationship between language model perplexity and IR precision-recall measures. Presented at the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Toronto: Association for Computing Machinery. Google Scholar
  • Bail, C. A. 2012. The fringe effect: Civil society organizations and the evolution of media discourse about Islam since the September 11th attacks. American Sociological Review, 77(6): 855–879. Google Scholar
  • Bail, C. A. 2014. The cultural environment: Measuring culture with big data. Theory and Society, 43(3–4): 465–482. Google Scholar
  • Bail, C. A., Brown, T. W., & Mann, M. 2017. Channeling hearts and minds: Advocacy organizations, cognitive-emotional currents, and public conversation. American Sociological Review, 82(6): 1188–1213. Google Scholar
  • Bakhtin, M. M. 1982. The dialogic imagination: Four essays. Austin, TX: University of Texas Press. Google Scholar
  • Ballinger, G. A., & Rockmann, K. W. 2010. Chutes versus ladders: Anchoring events and a punctuated-equilibrium perspective on social exchange relationships. Academy of Management Review, 35(3): 373–391.LinkGoogle Scholar
  • Bansal, P., & Corley, K. 2011. The coming of age for qualitative research: Embracing the diversity of qualitative methods. Academy of Management Journal, 54(2): 233–237.LinkGoogle Scholar
  • Bao, Y., & Datta, A. 2014. Simultaneously discovering and quantifying risk types from textual risk disclosures. Management Science, 60(6): 1371–1391. Google Scholar
  • Baumer, E. P. S., Mimno, D., Guha, S., Quan, E., & Gay, G. K. 2017. Comparing grounded theory and topic modeling: Extreme divergence or unlikely convergence? Journal of the Association for Information Science and Technology, 68(6): 1397–1410. Google Scholar
  • Benford, R. D., & Snow, D. A. 2000. Framing processes and social movements: An overview and assessment. Annual Review of Sociology, 26: 611–639. Google Scholar
  • Berelson, B. 1952. Content analysis in communication research. New York: Free Press. Google Scholar
  • Blanchard, S. J., Aloise, D., & Desarbo, W. S. 2017. Extracting summary piles from sorting task data. Journal of Marketing Research, 54(3): 398–414. Google Scholar
  • Blei, D. M. 2012. Probabilistic topic models. Communications of the ACM, 55(4): 77–84. Google Scholar
  • Blei, D. M., Griffiths, T. L., & Jordan, M. I. 2010. The nested Chinese restaurant process and Bayesian nonparametric inference of topic hierarchies. Journal of the ACM, 57(2): 7:1–7:30. Google Scholar
  • Blei, D. M., Ng, A. Y., & Jordan, M. I. 2003. Latent Dirichlet allocation. Journal of Machine Learning Research, 3: 993–1022. Google Scholar
  • Borgman, C. L. 2015. Big data, little data, no data: Scholarship in the networked world. Cambridge, MA: MIT Press. Google Scholar
  • Braun, M. T., Kuljanin, G., & DeShon, R. P. 2018. Special considerations for the acquisition and wrangling of Big Data. Organizational Research Methods, 21(3), 633–659, https://doi.org/10.1177/1094428117690235. Google Scholar
  • Breiger, R. L., Wagner-Pacifici, R., & Mohr, J. W. 2018. Capturing distinctions while mining text data: Toward low-tech formalization for text analysis. Poetics, 68: 104–119. Google Scholar
  • Burke, K., 1945. A grammar of motives. Berkeley, CA: University of California Press. Google Scholar
  • Büschken, J., & Allenby, G. M. 2016. Sentence-based text analysis for customer reviews. Marketing Science, 35(6): 953–975. Google Scholar
  • Buurma, R. S. 2015. The fictionality of topic modeling: Machine reading Anthony Trollope’s Barsetshire series. Big Data & Society, 2(2): 1–6, https://doi.org/10.1177/2053951715610591. Google Scholar
  • Campbell, J. L., Chen, H., Dhaliwal, D. S., Lu, H., & Steele, L. B. 2014. The information content of mandatory risk factor disclosures in corporate filings. Review of Accounting Studies, 19(1): 396–455. Google Scholar
  • Cao, L., & Fei-Fei, L. 2007. Spatially coherent latent topic model for concurrent segmentation and classification of objects and scenes. 2007 IEEE 11th International Conference on Computer Vision, ICCV: 1–8. Piscataway, NJ: IEEE. Google Scholar
  • Carley, K. M., & Kaufer, D. 1993. Semantic connectivity: An approach for analyzing semantic networks. Communication Theory, 3(3): 183–213. Google Scholar
  • Chang, J., & Blei, D. 2009. Relational topic models for document networks. In Artificial intelligence and statistics: 81–88. Retrieved from http://proceedings.mlr.press/v5/chang09a.html. Google Scholar
  • Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C., & Blei, D. M. 2009. Reading tea leaves: How humans interpret topic models. In Y. BengioD. SchuurmansJ. D. LaffertyC. K. I. WilliamsA. Culotta (Eds.), Advances in neutral information processing systems, vol. 22. Retrieved from https://papers.nips.cc/paper/3700-reading-tea-leaves-how-humans-interpret-topic-models.pdf. Google Scholar
  • Charmaz, K. 2014. Constructing grounded theory (2nd ed.). Thousand Oaks, CA: Sage. Google Scholar
  • Cho, Y.-J., Fu, P.-W., & Wu, C.-C. 2017. Popular research topics in marketing journals, 1995–2014. Journal of Interactive Marketing, 40: 52–72. Google Scholar
  • Chomsky, N. 1956. Three models for the description of language. IRE Transactions on Information Theory, 2(3): 113–124. Google Scholar
  • Cornelissen, J. P., Durand, R., Fiss, P. C., Lammers, J. C., & Vaara, E. 2015. Putting communication front and center in institutional theory and analysis. Academy of Management Review, 40(1): 10–27.LinkGoogle Scholar
  • Croidieu, G., & Kim, P. H. 2018. Labor of love: Amateurs and lay-expertise legitimation in the early U.S. radio field. Administrative Science Quarterly, 63(1): 1–42. Google Scholar
  • Crossley, S. A., Dascalu, M., & McNamarac, D. S. 2017. How important is size? An investigation of corpus size and meaning in both latent semantic analysis and latent Dirichlet allocation. 30th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2017. Menlo Park, CA: AAAI Press. Google Scholar
  • Dalpiaz, E., Rindova, V., & Ravasi, D. 2016. Combining logics to transform organizational agency: Blending industry and art at Alessi. Administrative Science Quarterly, 61(3): 347–392. Google Scholar
  • Davidson, E., Edwards, R., Jamieson, L., & Weller, S. 2019. Big data, qualitative style: A breadth-and-depth method for working with large amounts of secondary qualitative data. Quality & Quantity, 53(1): 363–376. Google Scholar
  • Davis, G. F. 2016. Can an economy survive without corporations? Technology and robust organizational alternatives. Academy of Management Perspectives, 30(2): 129–140.LinkGoogle Scholar
  • de Saussure, F. 1959. Course in general linguistics. New York: McGraw-Hill. Google Scholar
  • Deephouse, D. L. 1999. To be different, or to be the same? It’s a question (and theory) of strategic balance. Strategic Management Journal, 20(2): 147–166. Google Scholar
  • Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. 1990. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6): 391. Google Scholar
  • DeLanda, M. 2006. A new philosophy of society: Assemblage theory and social complexity. London: A&C Black. Google Scholar
  • Deleuze, G., & Guattari, F. 1987. A thousand plateaus. New York: Continuum. Google Scholar
  • Denzin, N. K., & Lincoln, Y. S. 2011. The SAGE handbook of qualitative research. Thousand Oaks, CA: Sage. Google Scholar
  • Dey, I. 1995. Reducing fragmentation in qualitative research. In U. Kelle (Ed.), Computer-aided qualitative data analysis: Theory, methods, and practice: 69–79. London: Sage. Google Scholar
  • Diesner, J., & Carley, K. M. 2005. Revealing social structure from texts: Meta-matrix text analysis as a novel method for network text analysis. In V. K. NarayananD. J. Armstrong (Eds.), Causal mapping for research in information technology: 81–108. Hershey, PA: IGI Global. Google Scholar
  • DiMaggio, P. J. 1997. Culture and cognition. Annual Review of Sociology, 23: 263–287. Google Scholar
  • DiMaggio, P. J. 2015. Adapting computational text analysis to social science (and vice versa). Big Data & Society, 2(2): 2053951715602908. Google Scholar
  • DiMaggio, P. J., Nag, M., & Blei, D. 2013. Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of U.S. government arts funding. Poetics, 41(6): 570–606. Google Scholar
  • Durand, R., & Khaire, M. 2017. Where do market categories come from and how? Distinguishing category creation from category emergence. Journal of Management, 43(1): 87–110. Google Scholar
  • Durand, R., & Paolella, L. 2013. Category stretching: Reorienting research on categories in strategy, entrepreneurship, and organization theory. Journal of Management Studies, 50(6): 1100–1123. Google Scholar
  • Duriau, V. J., Reger, R. K., & Pfarrer, M. D. 2007. A content analysis of the content analysis literature in organization studies: Research themes, data sources, and methodological refinements. Organizational Research Methods, 10(1): 5–34. Google Scholar
  • Eisenhardt, K. M. 1989. Building theories from case study research. Academy of Management Review, 14(4): 532–550.LinkGoogle Scholar
  • Evans, J. A., & Aceves, P. 2016. Machine translation: Mining text for social theory. Annual Review of Sociology, 42(1): 21–50. Google Scholar
  • Fama, E. F., & French, K. R. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1): 3–56. Google Scholar
  • Firth, J. R. 1957. Papers in linguistics. London: Oxford University Press. Google Scholar
  • Fiss, P. C. 2007. A set-theoretic approach to organizational configurations. Academy of Management Review, 32(4): 1180–1198.LinkGoogle Scholar
  • Fiss, P. C., & Hirsch, P. M. 2005. The discourse of globalization: Framing and sensemaking of an emerging concept. American Sociological Review, 70(1): 29–52. Google Scholar
  • Fleming, L. 2001. Recombinant uncertainty in technological search. Management Science, 47(1): 117–132. Google Scholar
  • Fligstein, N., & McAdam, D. 2011. Toward a general theory of strategic action fields. Sociological Theory, 29(1): 1–26. Google Scholar
  • Fligstein, N., Stuart Brundage, J., & Schultz, M. 2017. Seeing like the Fed: Culture, cognition, and framing in the failure to anticipate the financial crisis of 2008. American Sociological Review, 82(5): 879–909. Google Scholar
  • Forbes, D. P., & Kirsch, D. A. 2011. The study of emerging industries: Recognizing and responding to some central problems. Journal of Business Venturing, 26: 589–602. Google Scholar
  • Gehman, J., Glaser, V. L., Eisenhardt, K. M., Gioia, D., Langley, A., & Corley, K. G. 2018. Finding theory-method fit: A comparison of three qualitative approaches to theory building. Journal of Management Inquiry, 27(3): 284–300. Google Scholar
  • Gehman, J., & Soublière, J.-F. 2017. Cultural entrepreneurship: From making culture to cultural making. Innovation, 19(1): 61–73. Google Scholar
  • Gerlach, M., Peixoto, T. P., & Altmann, E. G. 2018. A network approach to topic models. Science Advances, 4(7): eaaq1360. Google Scholar
  • Gioia, D. A., Corley, K. G., & Hamilton, A. L. 2013. Seeking qualitative rigor in inductive research: Notes on the Gioia methodology. Organizational Research Methods, 16(1): 15–31. Google Scholar
  • Gioia, D. A., & Thomas, J. B. 1996. Identity, image, and issue interpretation: Sensemaking during strategic change in academia. Administrative Science Quarterly, 41(3): 370–403. Google Scholar
  • Giorgi, S., & Weber, K. 2015. Marks of distinction: Framing and audience appreciation in the context of investment advice. Administrative Science Quarterly, 60(2): 333–367. Google Scholar
  • Goffman, E. 1974. Frame analysis: An essay on the organization of experience. Cambridge, MA: Harvard University Press. Google Scholar
  • Greve, H. R. 2003. Organizational learning from performance feedback: A behavioral perspective on innovation and change. Cambridge, UK: Cambridge University Press. Google Scholar
  • Griffiths, T. L., & Steyvers, M. 2004. Finding scientific topics. Proceedings of the National Academy of Sciences, 101(suppl 1): 5228–5235, https://doi.org/10.1073/pnas.0307752101. Google Scholar
  • Grimmer, J., & Stewart, B. M. 2013. Text as data: The promise and pitfalls of automatic content analysis methods for political texts. Political Analysis, 21(3): 267–297. Google Scholar
  • Guerreiro, J., Rita, P., & Trigueiros, D. 2016. A text mining-based review of cause-related marketing literature. Journal of Business Ethics, 139(1): 111–128. Google Scholar
  • Guo, L., Sharma, R., Yin, L., Lu, R., & Rong, K. 2017. Automated competitor analysis using big data analytics: Evidence from the fitness mobile app business. Business Process Management Journal, 23(3): 735–762. Google Scholar
  • Haans, R. F. J. 2019. What’s the value of being different when everyone is? The effects of distinctiveness on performance in homogeneous versus heterogeneous categories. Strategic Management Journal, 40(1): 3–27. Google Scholar
  • Hankammer, S., Antons, D., Kleer, R., & Piller, F. 2016. Researching mass customization: Mapping hidden structures and development trajectories. Academy of Management Proceedings, 2016(1): 10900.LinkGoogle Scholar
  • Hannan, M. T., & Carroll, G. R. 1992. Dynamics of organizational populations: Density, legitimation, and competition. Oxford: Oxford University Press. Google Scholar
  • Hannan, M. T., Pólos, L., & Carroll, G. R. 2007. Logics of organization theory: Audiences, codes, and ecologies. Princeton, NJ: Princeton University Press. Google Scholar
  • Hannigan, T. R., & Casasnovas, G. 2019. New structuralism and field emergence: The co-constitution of meanings and actors in the early moments of impact investing. In Research in the sociology of organizations (forthcoming). Google Scholar
  • Hannigan, T. R., Porac, J. F., Bundy, J., Wade, J. B., & Graffin, S. D. 2019. Crossing the line or creating the line: Media effects in the 2009 British MP expense scandal. Working paper. Google Scholar
  • Hatch, M. J. 1993. The dynamics of organizational culture. Academy of Management Review, 18(4): 657–693.LinkGoogle Scholar
  • Hatch, M. J., & Schultz, M. 2017. Toward a theory of using history authentically: Historicizing in the Carlsberg Group. Administrative Science Quarterly, 62(4): 657–697. Google Scholar
  • Heugens, P. P., & Lander, M. W. 2009. Structure! Agency! (and other quarrels): A meta-analysis of institutional theories of organization. Academy of Management Journal, 52(1): 61–85.LinkGoogle Scholar
  • Houghton, J. P., Siegel, M., Madnick, S., Tounaka, N., Nakamura, K., Sugiyama, T., Nakagawa, D., & Shirnen, B. 2017. Beyond keywords: Tracking the evolution of conversational clusters in social media. Sociological Methods & Research, https://doi.org/10.1177/0049124117729705. Google Scholar
  • Hu, D. J., & Saul, L. K. 2009. A probabilistic topic model for music analysis. Proceedings of NIPS, 9: 1–4. Google Scholar
  • Huang, A. H., Lehavy, R., Zang, A. Y., & Zheng, R. 2017. Analyst information discovery and interpretation roles: A topic modeling approach. Management Science, 64(6): 2833–2855. Google Scholar
  • Huang, X., Li, X., Zhang, L., Liu, T., Chiu, D., & Zhu, T. 2015. Topic model for identifying suicidal ideation in Chinese microblog. 29th Pacific Asia Conference on Language, Information and Computation: 553–562. Google Scholar
  • Humphreys, A., & Wang, R. J.-H. 2018. Automated text analysis for consumer research. Journal of Consumer Research, 44(6): 1274–1306. Google Scholar
  • Jacobs, B. J. D., Donkers, B., & Fok, D. 2016. Model-based purchase predictions for large assortments. Marketing Science, 35(3): 389–404. Google Scholar
  • Jensen, C. B., & Rödje, K. 2010. Deleuzian intersections: Science, technology, anthropology. New York: Berghahn Books. Google Scholar
  • Jha, H. K., & Beckman, C. M. 2017. A patchwork of identities: Emergence of charter schools as a new organizational form. Research in the Sociology of Organizations, 50: 69–107. Google Scholar
  • Jin, M., Luo, X., Zhu, H., & Zhuo, H. H. 2018. Combining deep learning and topic modeling for review understanding in context-aware recommendation. Proceedings of NAACL-HLT 2018: 1605–1614. Google Scholar
  • Jockers, M. L., & Mimno, D. 2013. Significant themes in 19th-century literature. Poetics, 41(6): 750–769. Google Scholar
  • Kaminski, J., Jiang, Y., Piller, F., & Hopp, C. 2017. Do user entrepreneurs speak different? Applying natural language processing to crowdfunding videos. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems: 2683–2689. New York: ACM. Google Scholar
  • Kaplan, S. 2008a. Cognition, capabilities, and incentives: Assessing firm response to the fiber-optic revolution. Academy of Management Journal, 51(4): 672–695.LinkGoogle Scholar
  • Kaplan, S. 2008b. Framing contests: Strategy making under uncertainty. Organization Science, 19(5): 729–752. Google Scholar
  • Kaplan, S., & Vakili, K. 2015. The double-edged word of recombination in breakthrough innovation. Strategic Management Journal, 36(10): 1435–1457. Google Scholar
  • Karanovic, J., Berends, H., & Engel, Y. 2018. Is platform capitalism legit? Ask the workers. Academy of Management Proceedings, 2018(1): 17038.LinkGoogle Scholar
  • Kennedy, M. T. 2005. Behind the one-way mirror: Refraction in the construction of product market categories. Poetics, 33(3–4): 201–226. Google Scholar
  • Kennedy, M. T. 2008. Getting counted: Markets, media, and reality. American Sociological Review, 73(2): 270–295. Google Scholar
  • Kennedy, M. T., & Fiss, P. C. 2013. An ontological turn in categories research: From standards of legitimacy to evidence of actuality. Journal of Management Studies, 50(6): 1138–1154. Google Scholar
  • Kim, H., Ahn, S.-J., & Jung, W.-S. 2018. Horizon scanning in policy research database with a probabilistic topic model. Technological Forecasting and Social Change, https://doi.org/10.1016/j.techfore.2018.02.007. Google Scholar
  • Kim, S., & Bae, J. 2016. Cross-cultural differences in concrete and abstract corporate social responsibility (CSR) campaigns: Perceived message clarity and perceived CSR as mediators. International Journal of Corporate Social Responsibility, 1: 1–14. Google Scholar
  • Kiss, T., & Strunk, J. 2006. Unsupervised multilingual sentence boundary detection. Computational Linguistics, 32(4): 485–525. Google Scholar
  • Kitchin, R., & McArdle, G. 2016. What makes big data, big data? Exploring the ontological characteristics of 26 datasets. Big Data & Society, 3(1): 1–10. Google Scholar
  • Kline, S. J., & Rosenberg, N. 1986. An overview of innovation. In R. LandauN. Rosenberg (Eds.), The positive sum strategy: Harnessing technology for economic growth: 275–306. Washington, DC: National Academy of Sciences. Google Scholar
  • Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B. E., Bussonnier, M., Frederic, J., & Corlay, S. 2016. Jupyter Notebooks—A publishing format for reproducible computational workflows. In F. LoizidesB. Schmidt (Eds.), Positioning and power in academic publishing: Players, agents and agendas: 87–90. Clifton, VA: IOS Press. Google Scholar
  • Kobayashi, V. B., Mol, S. T., Berkers, H. A., Kismihók, G., & Den Hartog, D. N. 2018. Text classification for organizational researchers: A tutorial. Organizational Research Methods, 21(3): 766–799. Google Scholar
  • Krippendorff, K. 1980. Content analysis (1st ed.). Beverly Hills, CA: Sage. Google Scholar
  • Krippendorff, K. 2004. Content analysis: An introduction to its methodology (2nd ed.). Thousand Oaks, CA: Sage. Google Scholar
  • Krippendorff, K. 2012. Content analysis: An introduction to its methodology (3rd ed.). Thousand Oaks, CA: Sage. Google Scholar
  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems, vol. 1: 1097–1105. Red Hook, NY: Curran Associates Inc. Google Scholar
  • Kuhn, T. S. 1996. The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago Press. Google Scholar
  • Langley, A. 1999. Strategies for theorizing from process data. Academy of Management Review, 24(4): 691–710.LinkGoogle Scholar
  • Langley, A., & Abdallah, C. 2011. Templates and turns in qualitative studies of strategy and management. In D. D. BerghD. J. Ketchen (Eds.), Building methodological bridges: 201–235. Bingley, UK: Emerald Group Publishing. Google Scholar
  • Lasswell, H. D. 1948. Power and personality. New York: W.W. Norton. Google Scholar
  • Lawrence, T. B., Suddaby, R., & Leca, B. 2009. Institutional work (1st ed.). Cambridge, UK: Cambridge University Press. Google Scholar
  • Lee, G. M., Qiu, L., & Whinston, A. B. 2016. A friend like me: Modeling network formation in a location-based social network. Journal of Management Information Systems, 33(4): 1008–1033. Google Scholar
  • Lee, H., Kwak, J., Song, M., & Kim, C. O. 2015. Coherence analysis of research and education using topic modeling. Scientometrics, 102(2): 1119–1137. Google Scholar
  • Lee, T. Y., & Bradlow, E. T. 2011. Automated marketing research using online customer reviews. Journal of Marketing Research, 48(5): 881–894. Google Scholar
  • Levy, K. E. C., & Franklin, M. 2014. Driving regulation: Using topic models to examine political contention in the U.S. trucking industry. Social Science Computer Review, 32(2): 182–194. Google Scholar
  • Lim, A., & Tsutsui, K. 2012. Globalization and commitment in corporate social responsibility: Cross-national analyses of institutional and political economy effects. American Sociological Review, 77(1): 69–98. Google Scholar
  • Liu, Y., Mai, F., & MacDonald, C. 2018. A big-data approach to understanding the thematic landscape of the field of business ethics, 1982–2016. Journal of Business Ethics, https://doi.org/10.1007/s10551-018-3806-5. Google Scholar
  • Locke, K. D. 2001. Grounded theory in management research. London: Sage. Google Scholar
  • Loewenstein, J., Ocasio, W., & Jones, C. 2012. Vocabularies and vocabulary structure: A new approach linking categories, practices, and institutions. Academy of Management Annals, 6(1): 41–86.LinkGoogle Scholar
  • Lounsbury, M., & Glynn, M. A. 2001. Cultural entrepreneurship: Stories, legitimacy, and the acquisition of resources. Strategic Management Journal, 22(6/7): 545–564. Google Scholar
  • Lounsbury, M., & Glynn, M. A. 2019. Cultural entrepreneurship: A new agenda for the study of entrepreneurial processes and possibilities. Cambridge, UK: Cambridge University Press. Google Scholar
  • Lounsbury, M., & Ventresca, M. 2003. The new structuralism in organizational theory. Organization, 10(3): 457–480. Google Scholar
  • Manning, C., Raghavan, P., & Schütze, H. 2010. Introduction to information retrieval. Natural Language Engineering, 16, 100–103. Google Scholar
  • Manning, C. D., & Schütze, H. 1999. Foundations of statistical natural language processing (1st ed.). Cambridge, MA: MIT Press. Google Scholar
  • Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J., & McClosky, D. 2014. The Stanford CoreNLP Natural Language Processing Toolkit. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations: 55–60. Available at https://www.aclweb.org/anthology/P14-5010. Accessed July 15, 2018. Google Scholar
  • Marciniak, D. 2016. Computational text analysis: Thoughts on the contingencies of an evolving method. Big Data & Society, 3(2): 1–5. Google Scholar
  • Marquis, C., Glynn, M. A., & Davis, G. F. 2007. Community isomorphism and corporate social action. Academy of Management Review, 32(3): 925–945.LinkGoogle Scholar
  • Marshall, E. A. 2013. Defining population problems: Using topic models for cross-national comparison of disciplinary development. Poetics, 41(6): 701–724. Google Scholar
  • Martens, M. L., Jennings, J. E., & Jennings, P. D. 2007. Do the stories they tell get them the money they need? The role of entrepreneurial narratives in resource acquisition. Academy of Management Journal, 50(5): 1107–1132.LinkGoogle Scholar
  • Mattmann, C. A. 2013. Computing: A vision for data science. Nature, 493(7433): 473. Google Scholar
  • McCallum, A. K. 2002. MALLET: A machine learning for language4 toolkit. Retrieved from http://mallet.cs.umass.edu. Accessed July 15, 2018. Google Scholar
  • McFarland, D. A., Ramage, D., Chuang, J., Heer, J., Manning, C. D., & Jurafsky, D. 2013. Differentiating language usage through topic models. Poetics, 41(6): 607–625. Google Scholar
  • Meyer, R. E., Jancsary, D., Höllerer, M. A., & Boxenbaum, E. 2017. The role of verbal and visual text in the process of institutionalization. Academy of Management Review, 43(3): 392–418. Google Scholar
  • Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. J. 1990. Introduction to WordNet: An on-line lexical database. International Journal of Lexicography, 3(4): 235–234. Google Scholar
  • Miller, I. M. 2013. Rebellion, crime and violence in Qing China, 1722–1911: A topic modeling approach. Poetics, 41(6): 626–649. Google Scholar
  • Mimno, D. 2012. Computational historiography: Data mining in a century of classics journals. Journal on Computing and Cultural Heritage, 5(1): 3:1–3:19. Google Scholar
  • Mimno, D., Wallach, H. M., Talley, E., Leenders, M., & McCallum, A. 2011. Optimizing semantic coherence in topic models. Proceedings of the Conference on Empirical Methods in Natural Language Processing: 262–272. Stroudsburg, PA: Association for Computational Linguistics. Google Scholar
  • Mohr, J. W. 1998. Measuring meaning structures. Annual Review of Sociology, 24: 345–370. Google Scholar
  • Mohr, J. W., & Bogdanov, P. 2013. Introduction—Topic models: What they are and why they matter. Poetics, 41(6): 545–569. Google Scholar
  • Mohr, J. W., & Duquenne, V. 1997. The duality of culture and practice: Poverty relief in New York city, 1888–1917. Theory and Society, 26(2/3): 305–356. Google Scholar
  • Mohr, J. W., Wagner-Pacifici, R., Breiger, R. L., & Bogdanov, P. 2013. Graphing the grammar of motives in national security strategies: Cultural interpretation, automated text analysis and the drama of global politics. Poetics, 41(6): 670–700. Google Scholar
  • Mollick, E. 2014. The dynamics of crowdfunding: An exploratory study. Journal of Business Venturing, 29(1): 1–16. Google Scholar
  • Momeni, A., & Rost, K. 2016. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling. Technological Forecasting and Social Change, 104: 16–29. Google Scholar
  • Moretti, F. 2013. Distant reading. New York: Verso. Google Scholar
  • Morgeson, F. P., Mitchell, T. R., & Liu, D. 2015. Event system theory: An event-oriented approach to the organizational sciences. Academy of Management Review, 40(4): 515–537.LinkGoogle Scholar
  • Mützel, S. 2015. Facing big data: Making sociology relevant. Big Data & Society, 2(2): 2053951715599179. Google Scholar
  • Nam, H., Joshi, Y. V., & Kannan, P. K. 2017. Harvesting brand information from social tags. Journal of Marketing, 81(4): 88–108. Google Scholar
  • Navis, C., & Glynn, M. A. 2010. How new market categories emerge: Temporal dynamics of legitimacy, identity, and entrepreneurship in satellite radio, 1990–2005. Administrative Science Quarterly, 55(3): 439–471. Google Scholar
  • Navis, C., & Glynn, M. A. 2011. Legitimate distinctiveness and the entrepreneurial identity: Influence on investor judgments of new venture plausibility. Academy of Management Review, 36(3): 477–499. Google Scholar
  • Nelsen, B. J., & Barley, S. R. 1997. For love or money? Commodification and the construction of an occupational mandate. Administrative Science Quarterly, 42(4): 619–653. Google Scholar
  • Nelson, L. K. 2017. Computational grounded theory: A methodological framework. Sociological Methods & Research: 0049124117729703. Google Scholar
  • Netzer, O., Feldman, R., Goldenberg, J., & Fresko, M. 2012. Mine your own business: Market-structure surveillance through text mining. Marketing Science, 31(3): 521–543. Google Scholar
  • Ocasio, W. 1997. Towards an attention-based view of the firm. Strategic Management Journal, 18: 187–206. Google Scholar
  • Oh, J., Stewart, A. E., & Phelps, R. E. 2017. Topics in the Journal of Counseling Psychology, 1963–2015. Journal of Counseling Psychology, 64(6): 604–615. Google Scholar
  • Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. 2015. The development and psychometric properties of LIWC2015. Austin, TX: University of Texas at Austin. Google Scholar
  • Pentland, B. T., & Feldman, M. S. 2005. Organizational routines as a unit of analysis. Industrial and Corporate Change, 14(5): 793–815. Google Scholar
  • Pfarrer, M., Pollock, T., & Rindova, V. 2010. A tale of two assets: The effects of firm reputation and celebrity on earnings surprises and investors’ reactions. Academy of Management Journal, 53(5): 1131–1152.LinkGoogle Scholar
  • Podolny, J. M. 1993. A status-based model of market competition. American Journal of Sociology, 98(4): 829–872. Google Scholar
  • Pollach, I. 2012. Taming textual data: The contribution of corpus linguistics to computer-aided text analysis. Organizational Research Methods, 15(2): 263–287. Google Scholar
  • Porac, J. F., Wade, J. B., & Pollock, T. G. 1999. Industry categories and the politics of the comparable firm in CEO compensation. Administrative Science Quarterly, 44(1): 112–144. Google Scholar
  • Pratt, M. G. 2009. From the editors: For the lack of a boilerplate: Tips on writing up (and reviewing) qualitative research. Academy of Management Journal, 52(5): 856–862.LinkGoogle Scholar
  • Prein, G., & Kelle, U. 1995. Using linkages and networks for theory building. In U. Kelle (Ed.), Computer qualitative data analysis: Theory, methods, and practice: 62–68. London: Sage Publications. Google Scholar
  • Pröllochs, N., & Feuerriegel, S. 2018. Business analytics for strategic management: Identifying and assessing corporate challenges via topic modeling. Information & Management, https://doi.org/10.1016/j.im.2018.05.003. Google Scholar
  • Puranam, D., Narayan, V., & Kadiyali, V. 2017. The effect of calorie posting regulation on consumer opinion: A flexible latent Dirichlet allocation model with informative priors. Marketing Science, 36(5): 726–746. Google Scholar
  • Raffaelli, R. 2018. Technology reemergence: Creating new value for old technologies in Swiss mechanical watchmaking, 1970–2008. Administrative Science Quarterly: 0001839218778505, https://doi.org/10.1177/0001839218778505. Google Scholar
  • Ragin, C. C. 2008. Redesigning social inquiry: Fuzzy sets and beyond. Chicago: University of Chicago Press. Google Scholar
  • Rao, H., Monin, P., & Durand, R. 2003. Institutional change in Toque Ville: Nouvelle cuisine as an identity movement in French gastronomy. American Journal of Sociology, 108(4): 795–843. Google Scholar
  • Rhee, E. Y., & Fiss, P. C. 2014. Framing controversial actions: Regulatory focus, source credibility, and stock market reaction to poison pill adoption. Academy of Management Journal, 57(6): 1734–1758.LinkGoogle Scholar
  • Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder‐Luis, J., Gadarian, S. K., Albertson, B., & Rand, D. G. 2014. Structural topic models for open-ended survey responses. American Journal of Political Science, 58(4): 1064–1082. Google Scholar
  • Rosen-Zvi, M., Griffiths, T., Steyvers, M., & Smyth, P. 2004. The author-topic model for authors and documents. Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence: 487–494. Arlington, VA: AUAI Press. Google Scholar
  • Rothenberg, A. 2014. Flight from wonder—An investigation of scientific creativity. New York: Oxford University Press. Google Scholar
  • Ruckman, K., & McCarthy, I. 2017. Why do some patents get licensed while others do not? Industrial and Corporate Change, 26(4): 667–688. Google Scholar
  • Schmiedel, T., Müller, O., & vom Brocke, J. 2018. Topic modeling as a strategy of inquiry in organizational research. Organizational Research Methods, 3(1), https://doi.org/10.1177/1094428118773858. Google Scholar
  • Shi, Z., Lee, G. M., & Whinston, A. B. 2016. Toward a better measure of business proximity: Topic modeling for industry intelligence. MIS Quarterly, 40(4): 1035–1056. Google Scholar
  • Sievert, C., & Shirley, K. 2014. LDAvis: A method for visualizing and interpreting topics. Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces: 63–70. Stroudsburg, PA: Association for Computational Linguistics. Google Scholar
  • Slingerland, E., Nichols, R., Neilbo, K., & Logan, C. 2017. The distant reading of religious texts: A “big data” approach to mind-body concepts in early China. Journal of the American Academy of Religion, 85(4): 985–1016. Google Scholar
  • Smith, A., Hawes, T., & Myers, M. 2014. Hiéarchie: Visualization for hierarchical topic models. Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces: 71–78. Baltimore, MD: Association for Computational Linguistics. Google Scholar
  • Snow, D. A., & Benford, R. D. 1988. Ideology, frame resonance, and participant mobilization. In B. KlandermansH. KriesiS. G. Tarrow (Eds.), International social movement research, vol. 1: 197–218. Greenwich, CT: JAI Press. Google Scholar
  • Snow, D. A., Rochford, E. B., Worden, S. K., & Benford, R. D. 1986. Frame alignment processes, micromobilization, and movement participation. American Sociological Review, 51(4): 464–481. Google Scholar
  • Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A., & Potts, C. 2013. Recursive deep models for semantic compositionality over a sentiment treebank. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing: 1631–1642. Retrieved from https://nlp.stanford.edu/∼socherr/EMNLP2013_RNTN.pdf. Accessed July 15, 2018. Google Scholar
  • Song, M., Heo, G. E., & Lee, D. 2015. Identifying the landscape of Alzheimer’s disease research with network and content analysis. Scientometrics, 102(1): 905–927. Google Scholar
  • Song, M., & Kim, S. Y. 2013. Detecting the knowledge structure of bioinformatics by mining full-text collections. Scientometrics, 96(1): 183–201. Google Scholar
  • Sørensen, J. B., & Stuart, T. E. 2000. Aging, obsolescence, and organizational innovation. Administrative Science Quarterly, 45(1): 81–112. Google Scholar
  • Stevens, K., Kegelmeyer, P., Andrzejewski, D., & Buttler, D. 2012. Exploring topic coherence over many models and many topics. Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning: 952–961. Google Scholar
  • Strauss, A. C., & Corbin, J. M. 1998. Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Los Angeles, CA: Sage. Google Scholar
  • Strothotte, T., & Schlechtweg, S. 2002. Non-photorealistic computer graphics: Modeling, rendering, and animation. San Francisco, CA: Morgan Kaufmann. Google Scholar
  • Suominen, A., Toivanen, H., & Seppänen, M. 2017. Firms’ knowledge profiles: Mapping patent data with unsupervised learning. Technological Forecasting and Social Change, 115: 131–142. Google Scholar
  • Tangherlini, T. R., & Leonard, P. 2013. Trawling in the sea of the great unread: Sub-corpus topic modeling and humanities research. Poetics, 41(6): 725–749. Google Scholar
  • Tchalian, H. 2019. Microfoundations and recursive analysis: A mixed-methods framework for language-based research, computational methods, and theory development. In Research in the Sociology of Organizations. Forthcoming. Google Scholar
  • Tchalian, H., Glaser, V. L., Hannigan, T. R., & Lounsbury, M. 2019. Institutional attention: Cultural entrepreneurship and the dynamics of category construction. Working paper. Google Scholar
  • Thornton, P. H., & Ocasio, W. 1999. Institutional logics and the historical contingency of power in organizations: Executive succession in the higher education publishing industry, 1958–1990. American Journal of Sociology, 105(3): 801–843. Google Scholar
  • Thornton, P. H., Ocasio, W., & Lounsbury, M. 2012. The institutional logics perspective: A new approach to culture, structure and process. New York: Oxford University Press. Google Scholar
  • Timmermans, S., & Tavory, I. 2012. Theory construction in qualitative research: From grounded theory to abductive analysis. Sociological Theory, 30(3): 167–186. Google Scholar
  • Tirunillai, S., & Tellis, G. J. 2014. Mining marketing meaning from online chatter: Strategic brand analysis of big data using latent Dirichlet allocation. Journal of Marketing Research, 51(4): 463–479. Google Scholar
  • Tolbert, P. S., & Zucker, L. G. 1996. The institutionalization of institutional theory. In S. CleggC. HardyW. Nord (Eds.), Handbook of organization studies: 175–190. London: Sage. Google Scholar
  • Tonidandel, S., King, E. B., & Cortina, J. M. 2018. Big data methods: Leveraging modern data analytic techniques to build organizational science. Organizational Research Methods, 21(3): 525–547. Google Scholar
  • Toubia, O., & Netzer, O. 2016. Idea generation, creativity, and prototypicality. Marketing Science, 36(1): 1–20. Google Scholar
  • Trajtenberg, M. 1990. A penny for your quotes: Patent citations and the value of innovations. RAND Journal of Economics, 21(1): 172–187. Google Scholar
  • Trusov, M., Ma, L., & Jamal, Z. 2016. Crumbs of the cookie: User profiling in customer-base analysis and behavioral targeting. Marketing Science, 35(3): 405–426. Google Scholar
  • Turney, P. D., & Pantel, P. 2010. From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37: 141–188. Google Scholar
  • Underwood, T. 2015. The literary uses of high-dimensional space. Big Data & Society, 2(2): 1–6. Google Scholar
  • Uzzi, B., Mukherjee, S., Stringer, M., & Jones, B. 2013. Atypical combinations and scientific impact. Science, 342(6157): 468–472. Google Scholar
  • Vaara, E. 2010. Taking the linguistic turn seriously: Strategy as a multifaceted and interdiscursive phenomenon. In J. BaumJ. B. Lampel (Eds.), The globalization of strategy research: 29–50. Bingley, UK: Emerald Group Publishing. Google Scholar
  • Vaara, E., Aranda, A., Etchanchu, H., Guyt, J., & Sele, K. 2019. How to make use of structural topic modeling in critical discourse analysis? Working paper. Google Scholar
  • Ventresca, M. J., & Mohr, J. W. 2002. Archival research methods. In J. A. C. Baum (Ed.), Blackwell companion to organizations: 805–828. Oxford: Blackwell. Google Scholar
  • Venugopalan, S., & Rai, V. 2015. Topic based classification and pattern identification in patents. Technological Forecasting and Social Change, 94: 236–250. Google Scholar
  • Vergne, J.-P., & Wry, T. 2014. Categorizing categorization research: Review, integration, and future directions. Journal of Management Studies, 51(1): 56–94. Google Scholar
  • Wagner-Pacifici, R., Mohr, J. W., & Breiger, R. L. 2015. Ontologies, methodologies, and new uses of big data in the social and cultural sciences. Big Data & Society, 2(2): 2053951715613810. Google Scholar
  • Wang, X., Bendle, N. T., Mai, F., & Cotte, J. 2015. The journal of consumer research at 40: A historical analysis. Journal of Consumer Research, 42(1): 5–18. Google Scholar
  • Wang, X., McCallum, A., & Wei, X. 2007. Topical n-grams: Phrase and topic discovery, with an application to information retrieval. Proceedings of the Seventh IEEE International Conference on Data Mining (ICDM 2007): 697–702. Piscataway, NJ: IEEE. Google Scholar
  • Wang, Y., & Chaudhry, A. 2018. When and how managers’ responses to online reviews affect subsequent reviews. Journal of Marketing Research, 55(2): 163–177. Google Scholar
  • Weber, K., & Dacin, M. T. 2011. The cultural construction of organizational life: Introduction to the special issue. Organization Science, 22(2): 287–298. Google Scholar
  • Weber, K., Patel, H., & Heinze, K. L. 2013. From cultural repertoires to institutional logics: A content-analytic method. In M. LounsburyE. Boxenbaum (Eds.), Institutional logics in action, vol. 39B: 351–382. Bingley, UK: Emerald Group Publishing. Google Scholar
  • Weber, R. P. 1990. Basic content analysis (2nd ed.). London: Sage. Google Scholar
  • Whetten, D. A. 1989. What constitutes a theoretical contribution? Academy of Management Review, 14(4): 490–495.LinkGoogle Scholar
  • Whorf, B. L. 1956. Language, thought, and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: Technology Press of Massachusetts Institute of Technology. Google Scholar
  • Wilson, A. J., & Joseph, J. 2015. Organizational attention and technological search in the multibusiness firm: Motorola from 1974 to 1997. Bingley, UK: Emerald Group Publishing. Google Scholar
  • Yau, C.-K., Porter, A., Newman, N., & Suominen, A. 2014. Clustering scientific documents with topic modeling. Scientometrics, 100(3): 767–786. Google Scholar
  • Zajac, E. J., & Fiss, P. C. 2006. The symbolic management of strategic change: Sensegiving via framing and decoupling. Academy of Management Journal, 49(6): 1173–1193. Google Scholar
  • Zajac, E. J., & Westphal, J. D. 1994. The costs and benefits of managerial incentives and monitoring in large U.S. corporations: When is more not better? Strategic Management Journal, 15(S1): 121–142. Google Scholar
  • Zhang, Y., Moe, W. W., & Schweidel, D. A. 2017. Modeling the role of message content and influencers in social media rebroadcasting. International Journal of Research in Marketing, 34(1): 100–119. Google Scholar
  • Zhao, E. Y., Fisher, G., Lounsbury, M., & Miller, D. 2017. Optimal distinctiveness: Broadening the interface between institutional theory and strategic management. Strategic Management Journal, 38(1): 93–113. Google Scholar
  • Zhao, E. Y., Ishihara, M., Jennings, P. D., & Lounsbury, M. 2018. Optimal distinctiveness in the console video game industry: An exemplar-based model of proto-category evolution. Organization Science, 29(4): 588–611. Google Scholar
  • Zott, C., & Huy, Q. N. 2007. How entrepreneurs use symbolic management to acquire resources. Administrative Science Quarterly, 52(1): 70–105. Google Scholar
  • Zuckerman, E. W. 1999. The categorical imperative: Securities analysts and the illegitimacy discount. American Journal of Sociology, 104(5): 1398–1438. Google Scholar
Academy of Management
  Academy of Management
  100 Summit Lake Drive, Suite 110
  Valhalla, NY 10595, USA
  Phone: +1 (914) 326-1800
  Fax: +1 (914) 326-1900